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Self-assembly of pre-selected molecular componestgramo-

lecular synthesid? represents a paradigm for “bottom-dpne- i \)
pot generation of nanoscale structures from readily available /A\ /’4\ /
molecular moieties. Thus far, geometric considerations have been r 3 /"“} \
exploited to guide the selection of nanoscale molecular targets, as I | - b
exemplified by polygorfs® and polyhedrd: 13 However, more than [__,// /
one superstructure can result from the assembly of identical N J | \
components, affording supramolecular isonér&é Figure 1 il- \v/ /)
lustrates three supramolecular isomers that can be generated from [ /
a single 120 molecular component or complementary angular and

linear components: hexagons, helices, and zigzag chains. Additional (2) (b) (c)

supramolecular isomers lnc_lude larger ring SySt_ems (nonplanar) andFigure 1. Schematic representation of three structural supramolecular
catenane supramolecular isomérgnd other discrete polyhedra  isomers possible for a 12Gngular ligand and a linear spacer: (a) 0D
may also be possibfé. hexagon, (b) 1D helix, (c) 1D zigzag chain.

The hexagon represents a discrete planar species of which only
a few examples have been reportédThe zigzag polymer has
been widely encountered, whereas the helix remains quite rare in
the context of coordination polyme#32! A suitable molecular
component that might serve as a building block in this context is
1,3-benzenedicarboxylic actdH,bdc, 5-substituted forms of which
can self-assemble into molecular hexad®i%23or bdc, which can
serve as a bifunctional ligarfdIn this contribution, we report the
synthesis and structural characterization of a nanoscale, neutral,
planar hexagori,2> and its supramolecular isomeric zigzag chain,
2,26 each resulting from modular self-assembly of 5-N\dc and
Cu(ll) (Figure 2)?” The known chromophot&is square pyramidal
Cu(ll) with two monodentate carboxylate ligands and three
coordinated solvent molecules.

1 results from the modular self-assembly of thirty molecular
components: six 5-Ngbdc moieties, six Cu(ll) cations, and Figure 2. Crystal structure of the two supramolecular isomers: hexagon
eighteen coordinated solvent molecules. The hexagons are un-L2and zigzag chai. There are wo crystallographically independent copper

I . o . atoms in the hexagon. Oxygen atoms from two 5,M@c moieties, DMSO,
charged and have been refined as havnn_g six dimethyl Su”ox'de_s'and HO occupy the basal positions. The apical position of the copper atoms
three methanols, and nine waters coordinated to the metals, withpoints inside the ring and is occupied by MeOH (Cul) an®DHCu2).
six uncoordinated methanols in the cavity. The effective outer Coordinated DMSO molecules point above and below the plane of the ring
diameter of the hexagon is 3.14 nm (measured from opposite nitro in an alternating fashion. Outer (measured from opposite nitro groups) and
groups). The distance from the center of the hexagon to the closes ngerr]r;mf:ss“ésgvfer?m opposite phthaloyl 2-H sites) diameters are 3.1 and
contacts, coordinated solvent molecules, is 0.58 nm, affording an - fesp v
internal cavity with an effective diameter of ca. 0.8 nm (Figure 3).

The effective inner diameter of a desolvated hexagon (measuredto the eclipsed stacking of the hexagons gb#t-5-OGoH21.82
from opposite phthaloyl 2-H sites) is 1.5 nm, compared to 1.2 nm There are hydrogen-bonding interactions between carbonyl oxygen
observed for the hexagons formed bybc-5-OGH,;.82 atoms of the 5-N@bdc moieties in one sheet and coordinated water

Molecules ofl pack into sheets with large voids (Figure 3a). molecules in adjacent sheets (Figure 4). The interlayer separation
The intralayer centroidcentroid separation is 3.5 nm. The sheets is 3.34 A, which is consistent with—s stacking?® The solvent-
stack in an ABCABC fashion (Figure 3b,c) creating hourglass- accessible voids in the crystal structure amount to ca. 10% of the
shaped channels along [001] with an effective diameter of ca. 0.8 total volume; however, this would be increased to 57% upon
nm at the narrowest point. This packing arrangement is contrary replacing the coordinated DMSO and MeOH molecules with water
molecules. The most intense peaks observed in the X-ray powder

(2)

:Sgggfg%”gif“goﬂﬁhgI'(-)r'izd‘;“ai': xtal@usf.edu. diffraction (XPD) patterns from the bulk sample are consistent with
* Academy of Sciences of Moldova. those calculated from single-crystal diffraction data.
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Figure 3. Space-filling model of: (a) Crystal packing dfinto a sheet

with centroid-centroid separations of 3.5 nm. (b) Sheets stacked in an
ABCABC fashion creating hourglass channels. (c) Side-view of the stacked
sheets ofl. Coordinated solvent molecules have been removed for clarity.

Figure 4. Interlayer hydrogen-bonding between carbonyl oxygen atoms
of 5-NO,-bdc and coordinated water molecules in adjacent sheets results
in 24 hydrogen-bonding interactions per hexagon.

Electrospray mass spectroscopy indicates thaexists in
methanol with 4-coordinated DMSO molecules and 14-coordinated
MeOH molecules (M = 2396m/z). 1 is readily soluble in MeOH
and sparingly soluble in hot DMSO and DMF. Thermogravimetric
analysis ofl shows a weight loss consistent with loss of guest and
coordinated solvent: 9.1% at 48°Z (calcd 7.5%) and 31% at
91.0°C (calcd 28.5%).

Supramolecular isomeric zigzag chain2adre obtained under
similar reaction condition&. The chains pack efficiently and eschew
open cavities. The structure is sustained by hydrogen bonding
between the chains and—x stacking between the phenyl rings.
There are no significant geometrical differences between the
chromophores il and2.

We present herein what to our knowledge is the largest, neutral
molecular hexagon characterized by single-crystal X-ray crystal-
lography and one of its supramolecular isomers, a zigzag chain.

Our results indicate that, as might have been expected, the closed

discrete structure is thermodynamically favored over the open
polymeric supramolecular isomer.
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